Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Cognitive radio networks (CRNs), which offer novel network architecture for utilising spectrums, have attracted significant attention in recent years. CRN users use spectrums opportunistically, which means they sense a channel, and if it is free, they start transmitting in that channel. In cooperative spectrum sensing, a secondary user (SU) decides about the presence of the primary user (PU) based on information from other SUs. Malicious SUs (MSUs) send false sensing information to other SUs so that they make wrong decisions about the spectrum status. As a result, an SU may transmit during the presence of the PU or may keep starving for the spectrum. In this paper, we propose a reputation-based mechanism which can minimise the effects of MSUs on decision making in cooperative spectrum sensing. Some of the SUs are selected as distributed fusion centres (DFCs), that are responsible for making decisions about the presence of PU and informing the reporting SUs. A DFC uses weighted majority voting among the reporting SUs, where weights are normalised reputation. The DFC updates reputations of SUs based on confidence of an election. If the majority wins by a significant margin, the confidence of the election is high. In this case, SUs that belong to the majority gain high reputations. We conduct extensive simulations to validate our proposed model.more » « less
- 
            In dynamic spectrum access (DSA), Environmental Sensing Capability (ESC) systems are implemented to detect the incumbent users' (IU) activities for protecting them from secondary users' (SU) interference as well as maximizing secondary spectrum usage. However, IU location information is often highly sensitive and hence it is preferable to hide its true location under the detection of ESCs. In this paper, we design novel schemes to preserve both static and moving IU's location information by adjusting IU's radiation pattern and transmit power. We first formulate IU privacy protection problem for static IU. Due to the intractable nature of this problem, we propose a heuristic approach based on sampling. We also formulate the privacy protection problem for moving IUs, in which two cases are analyzed: (1) protect IU's moving traces; (2) protect its real-time current location information. Our analysis provides insightful advice for IU to preserve its location privacy against ESCs. Simulation results show that our approach provides great protection for IU's location privacy.more » « less
- 
            Spectrum monitoring is a powerful tool in dynamic spectrum access to help secondary users access the unused spectrum white space. The common approach for spectrum monitoring is to build infrastructures (e.g. spectrum observatories), which cost much money and manpower but have relatively low coverage. To aid in this, we propose a crowdsourcing based spectrum monitoring system for a large geographical area that leverages the power of masses of portable mobile devices. The system can accurately predict future spectrum utilization and intelligently schedule the spectrum monitoring tasks among mobile secondary users accordingly, so that the energy of mobile devices can be saved and more spectrum activities can be monitored. We also demonstrate our system's ability to capture not only the existing spectrum access patterns but also the unknown patterns where no historical spectrum information exist. The experiment shows that our spectrum monitoring system can obtain a high spectrum monitoring coverage and low energy consumption.more » « less
- 
            Dynamic Spectrum Access (DSA) is a promising solution to alleviate spectrum crowding. However, geolocation database-driven spectrum access system (SAS) presents privacy risks, as sensitive Incumbent User (IU) operation parameters are required to be stored by SAS in order to perform spectrum assignments properly. These sensitive operation parameters may potentially be compromised if SAS is the target of a cyber attack or SU inference attack. In this paper, we propose a novel privacy-preserving SAS-based DSA framework, Suspicion Zone SAS (SZ-SAS). This is the first framework which protects against both the scenario of inference attacks in an area with sparsely distributed IUs and the scenario of untrusted or compromised SAS. Evaluation results show SZ-SAS is capable of utilizing compatible obfuscation schemes to prevent the SU inference attack, while operating using only homomorphically encrypted IU operation parameters.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available